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We present a new wave packet based theory for thedirectcalculation of energy-transfer moments in molecular
collision processes. This theory does not contain any explicit reference to final state information associated
with the collision dynamics, thereby avoiding the need for determining vibration-rotation bound states (other
than the initial state) for the molecules undergoing collision and also avoiding the calculation of state-to-state
transition probabilities. The theory applies to energy-transfer moments of any order, and it generates moments
for a wide range of translational energies in a single calculation. Two applications of the theory are made that
demonstrate its viability; one is to collinear He+ H2 and the other to collinear He+ CS2 (with two active
vibrational modes in CS2). The results of these applications agree well with earlier results based on explicit
calculation of transition probabilities.

I. Introduction

Interest in collisional energy transfer involving highly excited
polyatomic molecules has grown significantly in recent years.
Such energy-transfer processes, which provide a mechanism for
the dissipation and accumulation of energy in excited molecules,
are important in the relaxation of photoexcited molecules and
in gas-phase chemical kinetics. Much of the increased interest
in energy-transfer processes can be attributed to two factors:
(1) the development of experimental spectroscopic techniques
for the direct study of the time evolution of the excited species
during relaxation1,2 and (2) the development of theoretical
methods for simulation of these experiments.3-8

The theoretical modeling of energy transfer in vibrationally
highly excited molecules using quantum methods is difficult
because of the large number of accessible quantum states.
Indeed, the complete solution to such a problem, i.e., solving
the quantum scattering equations to yieldall the inelastic state-
to-state collision probabilities, is clearly very challenging. As
a result, most of the theoretical work done so far has involved
classical trajectory calculations. However, there has been
concern about the nature of the classical-quantum correspon-
dence, which has so far only been established for model systems
of low dimensionality, so quantum calculations continue to be
of interest for these kinds of problems.

In most practical applications only highly averaged quantities
are measured or are of interest, such as the moments of the
energy-transfer rate constants and cross sections. In this paper
we present a new quantum theory for thedirect calculation of
the moments of energy-transfer cross sections. This theory does
not require the computation of the very large number of bound-
state energies and eigenfunctions that are required in conven-
tional coupled-channel calculations nor does it require the
computation of the individual transition probabilities to these
large numbers of closely spaced vibrational-rotational states.
The theory is based on a time-dependent wave packet formalism

and therefore yields moments over a wide range of energies in
a single calculation. This is in contrast to a time-independent
formalism that would require a separate computation to be
carried out at each collision energy. The moments of the energy-
transfer cross sections, which result from the theory, fully
characterize the energy-transfer cross sections.

The theory developed here is similar in spirit to the other
quantum theories that have been developed in recent years that
determine averaged information about a scattering process
directly from the Hamiltonian, without the need for determining
fully state-resolved information. Of particular note here is the
work by Miller et al.9 for determining the cumulative reaction
probability and the thermal rate constant for bimolecular
chemical reactions. However, the present application to energy-
transfer moments is not directly related to this work, since one
cannot take advantage of the simplifying features of reactive
fluxes in the present application, and there is a dependence of
the moments on the initial state that complicates our evaluation.

Following a discussion of the details of the new theory
(section II), the results of its application to collinear collisions
of He + H2 (section III) and of He+ CS2 (section IV) are
presented and comparisons to other calculations are made.
Section V summarizes our conclusions.

II. Theory and Computations

The general strategy of the time-dependent computations
involves preparation of an initial wave packet on a grid in the
asymptotic region where the He atom is separated from its
collision partner by a large distance. This wave packet is then
given momentum in the negativex direction (x being the atom-
molecule scattering coordinate) through multiplication by a
complex phase factor. The time-dependent Schro¨dinger equation
is then solved by propagating the wave packet forward in time
in many relatively small steps using the complex Chebychev
polynomial expansion10-13 of the evolution operator. As the
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wave packet evolves, it is reflected back along thex coordinate.
An “analysis line”, corresponding to a fixed value ofx, is defined
to lie perpendicularly across the exit valley in its asymptotic
region. At each time step, a cut is taken through the wave packet
along this analysis line, and the resulting wave function is
analyzed as defined for our new theory (see details below). The
analysis makes use of the fast Fourier transform (FFT)
technique14,15 for conversions between the coordinate and
momentum domains16 and between the time and energy
domains.

The following discussion presents the details of the new
theory and how it can be implemented in the time-dependent
quantum mechanical calculations. We begin by writing down
an equation for the cross section for inelastic collision from
initial state i to final state f:17

whereki ) pi/p, J is the total angular momentum of the system,
andSiff

J are the elements of theS matrix. We then define the
quantity of interest, which is the cross section for the moments
of energy transfer:

whereE is the collision energy and∆E is the difference in
energy between the initial and final vibrational states of the
collision partner,∆E ) Ef - Ei. The quantity in eq 2 is the
cross section for thenth moment of the energy transfer at energy
E. For n ) 1 this is just the cross section for energy transfer,
and the average energy transfer〈∆E〉 equalsσi

1/σi
0. Note that

although we have developed the theory for scattering in three
dimensions, the corresponding one-dimensional theory is easily
developed by restricting the sum overJ to J ) 0 and omitting
the factor ofπ/k2 in eq 1. Note also that the quantity being
calculated has been summed over all final states and therefore
depends only on the initial state. Substituting eq 1 into eq 2
and assuming i* f, we have

The quantity|Siff
J |2 can be obtained from the wave packet.

The Fourier grid Hamiltonian (FGH) method18 is used to
compute the one-dimensional vibrational eigenfunctions, and
these in turn are used to define a potential-optimized discrete
variable representation (DVR) with its associated grid points
and basis functions.19-21 The eigenfunction of the initial state
of the collision partner,φi(y), is computed in this DVR basis.
This wave function is then multiplied by a Gaussian function
in the x (scattering) coordinate [exp(-â(x - x0)2)], and the
product of these two functions is multiplied by an incoming
traveling wave in thex coordinate. Therefore, the initial wave
packet can be written as

We must then analyzeg(x) to determine how much of it
corresponds to a momentum “k” (i.e., we find the amplitude of
the component of the wave packet with magnitude of the
momentumk that is in the appropriate direction to simulate a
He atom approaching its collision partner). This is done by

Fourier transforming the initial wave packet to obtain22

Starting with the initial wave packet given in eq 4, the time-
dependent Schro¨dinger equation is solved by propagating in
discrete time intervals using the complex Chebychev polynomial
expansion.10-13 After each time interval, the wave packet is
evaluated along an analysis line in the asymptotic region
such thatx ) x∞. If we represent a cut through the wave packet
along this analysis line at timet asΨ(x∞,y,t) and expand it in
terms of the eigenfunctions of the final state of the collision
partner,φf(y), we can compute the time-dependent coefficients,
Cf(t):22,23

The Fourier transform of these time-dependent coefficients is22,23

whereAf(t) are the corresponding energy-dependent coefficients.
The S matrix element is then given by22-24

and therefore

Thus, the cross section is given by eqs 3 and 9. Substitution of
eq 9 into eq 3 gives

Now let Ĥy be the internal Hamiltonian such that

and

We also must evaluate (see eq 10)

σiff(E) )
π

ki
2
∑

J

(2J + 1)|Siff
J - δif|2 (1)

σi
n(∆E,E) ) ∑

f

σiff(E)(∆E)n (2)

σi
n(∆E,E) ) ∑

f

π

ki
2
∑

J

(2J + 1)|Siff
J |2(Ef - Ei)

n (3)

Ψ(x,y) ) e-â(x-x0)2
e-ik(x-x0)φi(y) ) g(x)φi(y) (4)

f(ki) ) 1
2π ∫x)0

∞
e-ikixg(x) dx (5)

Cf(t) ) ∫y)0

∞
φf(y)Ψ(x∞,y,t) dy (6)

Af(E) ) 1
2π ∫t)0

∞
eiEt/pCf(t) dt (7)

Siff
J (E) ) p

µ xkikf

Af(E)

f(-ki)
eikfx• (8)

|SJ
iff(E)|2 ) p2

µ2
kikf |Af(E)

f(-ki)|2 (9)

σi
n(∆E,E) )

h2

4πµ2 (1

ki
) ∑

J

(2J + 1) ∑
f

kf |Af(E)

f(-ki)
|2 (Ef - Ei)

n

)
h2

4πµ2ki|f(-ki)|2
∑

J

(2J + 1) ∑
f

kf(Ef - Ei)
n

4π2
×

∫t′∫t
e-iEt/p〈ΨJ(x∞,y,t)|φf(y)〉〈φf(y)| ×

ΨJ(x∞,y,t′)〉eiEt′/p dt dt′

)
h2

16π3µ2ki|f(-ki)|2
∑

J

(2J + 1)∫t′ ∫t
e-iEt/p ×

〈ΨJ(x∞,y,t)|[∑
f

(Ef - Ei)
n|φf(y)〉〈φf(y)|kf] ×

|ΨJ(x∞,y,t′)〉eiEt′/p dt dt′ (10)

Ĥy|φf(y)〉 ) Ef|φf(y)〉 (11)

∑
f

|φf(y)〉〈φf(y)| ) Î
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where k̂x is the momentum operator for thex coordinate.
Equation 12 follows from the fact that in the limitx f ∞, ΨJ

becomes a plane wave eikfx when projected onto the eigenfunc-
tion φf(y) for f * i. To evaluate this expression, we define the
function Φx

J by

This equation is evaluated by Fourier transformingΨJ(x,y,t)
alongx and multiplying bykx, then back Fourier transforming.
Equation 10 can now be rewritten in the form

If we now define

and

then eq 14 can be rewritten as

Equation 15 shows the primary result of the new theory,
which is that the cross sections for the moments of energy
transfer can be obtained directly, without first obtaining the state-
to-state inelastic collision cross sections. Although the initial
energyEi appears in eq 14 and the eigenfunctionφi(y) is needed
to define the initial wave packet in eq 4, these can be determined
with significantly less effort than is needed to determine the
entire spectrum of energy levels for a full state-resolved
scattering calculation. In addition, if one only wishes to calculate
moments for a statistical ensemble of states (such as a
microcanonical ensemble), the sampling of initial conditions can
be performed in many ways that do not require eigenvalues and
eigenfunctions.

Note what is involved in the evaluation ofXJn. One first needs
to evaluateΦx

J as described above. Then the application ofHy

is performed using highly efficient potential optimized discrete
variable representation techniques.17-19 The symbol “y” repre-
sents all the internal coordinates of the collision partners. The
internal Hamiltonian is divided into a separable (kinetic energy
plus potential) and a nonseparable (potential) part. The potential
optimized discrete variable representation technique provides
us with a compact grid based matrix representation of the
separable part of the Hamiltonian, while the nonseparable
potential part is handled by direct multiplication. A time Fourier
transform is then used to determineXJn.

Because the theory is formulated within a time-dependent
framework, the energy dependence of these cross sections is

also immediately obtained. The corresponding one-dimensional
theory is obtained from eq 15 by settingJ ) 0 and multiplying
by ki

2/π.

III. Test Cases: He + H2 Inelastic Collisions

For testing purposes, we have applied the one-dimensional
version of the new theory to the collinear He+ H2 system,
considering both harmonic and Morse binding potentials for H2.
The calculations are set up following the formalism discussed
by Clark and Dickinson.25

The collision problem is illustrated in Figure 1. All three
atoms are constrained to move along the line defined by the
molecular axis, H(1)-H(2). The distance between the He atom
and the center of mass of H2 is represented byx′, andy′ andz′
are the H(1)-H(2) and He-H(1) distances, respectively. The
incident He atom encounters the repulsive core of the intermo-
lecular potential,V′(z′), between He and H(1), and H(1) and
H(2) are bound by the intramolecular potential,V′(y′).

We consider both the harmonic and Morse binding potentials,
which take the form

where f is the harmonic oscillator force constant,y′eq is the
H(1)-H(2) equilibrium distance, andDe anda are the Morse
potential well depth and steepness parameter, respectively.

It is then useful to transform to dimensionless coordinates
(x,y,z) where the collision problem is most conveniently
expressed. Therefore, we have

The Schro¨dinger equation may then be written26

wherem ) (mHemH(2))/[mH(1)(mHe + mH(1) + mH(2))], V(y or z)
) V′(y or z)/(1/2pωe), andE is the total energy of the system in
units of 1/2pωe (ωe ) 2πc times the vibrational constant as
defined in Herzberg27). In these coordinates, eqs 16 and 17
become

〈φf(y)|kf|ΨJ(x∞,y,t′)〉 ) [〈φf(y)|k̂x|ΨJ(x,y,t′)〉]x)∞ (12)

k̂x|ΨJ(x,y,t′)〉 ) |Φx
J(x,y,t)〉 (13)

σi
n(∆E,E) )

h2

16π3µ2ki|f(-ki)|2
∑

J

(2J + 1)∫t′ ∫t
e-iEt/peiEt′/p ×

〈ΨJ(x∞,y,t)|(Ĥy - Ei)
n|Φx

J(x∞,y,t′)〉 dt dt′ (14)

XJn(y,E) ) ∫t′
eiEt′/p(Ĥy - Ei)

nΦx
J(x∞,y,t′) dt′

ΨJ(y,E) ) ∫t
eiEt/pΨJ(x∞,y,t) dt

σi
n(∆E,E) )

p2

4πµ2ki|f(-ki)|2
∑

J

(2J + 1)〈ΨJ(y,E)|XJn(y,E)〉

(15)

Figure 1. Definition of coordinates for the collinear He+ H2 collision.

V′(y′) ) 1/2f (y′ - y′eq)
2 (16)

V′(y′) ) De[exp{-a(y′ - y′eq)} - 1]2 (17)

x ) η[(1/γ)x′ - γy′eq]

y ) η(y′ - y′eq)

z ) x - y

η ) [(µf)1/2/p]1/2

µ ) (mH(1)mH(2))/(mH(1) + mH(2))

g ) mH(2)/(mH(1) + mH(2))

[-1
2m

∂
2

∂x2
- 1

2
∂

2

∂y2
+ V(y) + V(z)]Ψ ) 1

2
EΨ
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respectively, whereDe ) De/(1/2pωe). The interaction potential,
V(z), is chosen to be

whereV0 andR are constants. Since the Hamiltonian is invariant
under the transformationx f x + δ, V0 f V0 exp(Rδ), where
δ is a constant,V0 may be chosen arbitrarily, and thus, we set
it to 1 hartree divided by1/2pωe. Now the model systems are
completely specified by the dimensionless constantsm ) 2/3, R
) 0.314, andDe ) 9.3, values that are realistic for He-H2

collisions.25,26,28,29

For later reference we note that the quantized vibrational
energies are (in units ofpωe)

for the harmonic and Morse cases, respectively.
Our calculations for the He+ H2 system are based on grids

consisting of 256 evenly spaced points in thex coordinate and
10 points of a potentially optimized grid17-19 in they coordinate.
The step size in time for the calculations is taken to be 0.10,
and we propagate for 500 time steps. Theâ parameter, which
determines the width of the initial wave packet, is set to 1.0.
For the harmonic case, the kinetic energy is chosen to be 6.0,
and the strength of the quartic complex damping function used
in the absorbing potential (as defined by Vibo´k and Balint-
Kurti30) is -33.0. For the Morse case, the kinetic energy is 4.0,
and the strength of the damping function is-16.5.

Figures 2 and 3 present the cross sections for the moments
of the energy transfer,σi

n(∆E,E), versus total energy,E, for the
He + H2 system with H2 represented as a harmonic and as a
Morse oscillator, respectively. Included in these figures are the
results from our new theory (forn ) 0-3) as well as the results
of time-independent quantum calculations forn ) 2 by Clark
and Dickinson.25 They calculated exact quantum mechanical
vibrational energy transition probabilities, which can be con-
verted into energy-transfer moments using eq 2 and either eq
18 or eq 19. All results in both figures refer to the initial state
being equal to the ground state of H2. These figures show
excellent agreement between the results from the new theory
and the results of Clark and Dickinson for both test cases.
Another test of the theory is provided by the zeroth moment,
which should be unity, independent ofE. Here, the figures
indicate that this moment is indeed very close to unity. Overall
then, this application demonstrates a successful first application
of the new theory for the direct calculation of the energy-transfer
moments.

IV. Collinear He + CS2

In this section we apply the new theory to a collinear model
of He + CS2 in which both the intermolecular and intramo-
lecular potentials are chosen to be realistic. This collinear model
has been studied in the past by both classical and quantum
methods, with particular emphasis on the classical-quantum
correspondence for the energy-transfer moments. The early
classical dynamics work3 included comparisons of the energy-
transfer properties associated with the collinear model to those

of full-dimensional classical simulations. These studies deter-
mined that although the collinear model is missing the low-
frequency bend mode of CS2, the energy-transfer moments from
the collinear model are very similar to those from the full-
dimensional calculations. Later, additional classical dynamics
calculations were done in conjunction with quantum calculations
in studies by Schatz and co-workers.31,32The quantum dynamics
calculations were performed using coupled-channel calculations
with basis sets of 500 (for energies up to 75 kcal/mol (ref 29))
and 1000 (for energies up to 92 kcal/mol (ref 30)) vibrational
states from a discrete variable representation calculation. These
studies demonstrated very good classical-quantum agreement
of the energy-averaged first moments over a wide range of
molecular vibrational energies, provided that the translational
energy is not too low (translational temperatures below 300 K).

To calculate the moments of energy transfer for He+ CS2

using the new theory, we defineX to be the coordinate between
the He and the center of mass of CS2, Y1 to be the coordinate

V(y) ) 1/2y
2

V(y) ) De[exp{-y/(2De)
1/2} - 1]2

V(z) ) V0 exp(-Rz)

En ) 2(n + 1/2) (18)

En ) 2[(n + 1/2) - (n + 1/2)
2/(4De)] (19)

Figure 2. Energy-transfer moments for collinear He+ H2 collisions,
with H2 modeled as a harmonic oscillator and initially in the ground
state. Filled circles indicate results for the second moment from time-
independent calculations of Clark and Dickinson.25

Figure 3. Energy-transfer moments for collinear He+ H2 collisions
as in Figure 2 but with H2 modeled as a Morse oscillator.
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representing the C-S(2) distance, andY2 to be the coordinate
between S(1) and the center of mass of C-S(2). Then the
Hamiltonian for the complete system is

where

and whereV(Y1,Y2) is the intramolecular potential for CS2 and
V(X,Y1,Y2) is the intermolecular potential. We use the CS2

potential surface of Carter and Murrell,33 which is derived from
a spectroscopic force field at low energies and which dissociates
correctly. On this potential, the dissociation energy to CS+ S
is 129 kcal/mol and the harmonic stretch frequencies are 674
and 1532 cm-1. We also use the He-2 intermolecular potential
of Bruehl and Schatz.3 These potentials have been used in
previous studies of collisional energy transfer in the He+ CS2

system by Schatz and co-workers.3-6,31,32 We present results
for then ) 2 (Ei ) 5.1 kcal/mol) andn ) 15 (Ei ) 15.6 kcal/
mol) eigenstates of CS2, for which our calculated energies match
those of Schatz34 to four significant figures.

Our calculations for the He+ CS2 system are based on grids
consisting of 256 points in theX coordinate and 10 points in
the Y1 andY2 coordinates forn ) 2 or 20 points in theY1 and
Y2 coordinates forn ) 15. The step size in time is taken to be
100.0, and we propagate for 700 time steps. Theâ parameter
is set to 10.0, and the kinetic energy is 0.005 au (3.14 kcal/
mol) for n ) 2 and 0.010 au (6.28 kcal/mol) forn ) 15. In
both cases, the strength of the quartic complex damping function
used in the absorbing potential is-0.055.

Figures 4 and 5 present the energy-transfer moment,σi
1-

(∆E,E), versus total energy,E, for the collinear He+ CS2

system. Results from the new theory in these figures are in
excellent agreement with the results of coupled-channel calcula-
tions by Schatz.34

The excellent comparisons shown in Figures 2-5 provide
encouraging evidence for the utility of the new theory. Clearly,
it works well for the collinear models with modest excitation
of the collision partner. Future studies of this theory could
include preparing the collision partner in substantially higher
excited states to simulate situations involving photoexcited
molecules, as discussed in the Introduction. In addition, the
theory could be applied to three-dimensional collisions, as
opposed to being limited to collinear collisions.

V. Conclusion

This paper has presented a new theory in which the moments
of energy transfer are obtained directly, without first calculating
the state-to-state inelastic collision cross sections. The theory
is based on a time-dependent wave packet formalism and
therefore yields the energy dependence of the calculated
quantities in a single calculation. Results from application of
the new theory to collinear He+ H2 and He+ CS2 systems

are in excellent agreement with previous time-independent
calculations. These results demonstrate the success of the new
theory for collinear collision models where the collision partner
has modest excitation, and they encourage future applications
of the new theory to three-dimensional models as well as models
with highly excited collision partners.
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